Selection: Semi-hermetic Reciprocating Compressors

Input Values

Compressor model
Mode

Refrigerant
Reference temperature
Liq. subc. (in condenser)

Result

$\mathrm{Q}[\mathrm{W}]$	Cooling capacity
$\mathrm{Qu}[\mathrm{W}]$	Evaporator capacity
$\mathrm{P}[\mathrm{kW}]$	Power input
$\mathrm{I}[\mathrm{A}]$	Current
$\mathrm{Qc}[\mathrm{W}]$	Condenser capacity

6FEP-50P
Refrigeration and Air conditioning
R290
Dew point temp. 0 K

Suction gas temperature	$20,00{ }^{\circ} \mathrm{C}$
Operating mode	Auto
Power supply	$400 \mathrm{~V}-3-50 \mathrm{~Hz}$
Capacity control	100%
Useful superheat	100%

COP $[-]$	COP/EER
$m[\mathrm{~kg} / \mathrm{h}]$	Mass flow
Op.	Operating mode

th $\left[{ }^{\circ} \mathrm{C}\right] \quad$ Discharge gas temp. w/o cooling

tc	to	$0^{\circ} \mathrm{C}$	$-5^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C}$	$-15^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$	$-30^{\circ} \mathrm{C}$	$-35^{\circ} \mathrm{C}$
$30^{\circ} \mathrm{C}$	Q [W]	121672	101322	83549	68084	54691	43157	33291	24917
	Qu* [W]	121672	101322	83549	68084	54691	43157	33291	24917
	P [kW]	23,9	23,7	23,1	22,0	20,6	18,85	16,93	14,85
	1 [A]	58,5	58,2	57,3	55,9	53,9	51,6	49,1	46,5
	Qc [W]	145554	125032	106603	90066	75249	62008	50217	39767
	COP [-]	5,09	4,27	3,62	3,10	2,66	2,29	1,97	1,68
	m [kg/h]	1325	1094	896	726	580	456	350	261
	Op.	Standard							
	th [$\left.{ }^{\circ} \mathrm{C}\right]$	63,3	70,8	78,8	87,5	97,0	107,5	119,5	133,6
$40^{\circ} \mathrm{C}$	Q [W]	108943	90592	74535	60539	48398	37926	28954	21326
	Qu* [W]	108943	90592	74535	60539	48398	37926	28954	21326
	$\mathrm{P}[\mathrm{kW}]$	28,9	27,9	26,5	24,7	22,7	20,4	17,95	15,43
	1 [A]	65,1	63,8	62,0	59,6	56,8	53,7	50,4	47,2
	Qc [W]	137824	118489	101022	85258	71060	58310	46906	36760
	COP [-]	3,77	3,25	2,81	2,45	2,14	1,86	1,61	1,38
	m [kg/h]	1296	1068	872	704	560	437	332	244
	Op.	Standard							
	th [${ }^{\circ} \mathrm{C}$]	74,4	81,9	89,9	98,6	108,1	118,7	131,0	0
$50^{\circ} \mathrm{C}$	Q [W]	95004	78868	64713	52346	41595	32301	24320	17518
	Qu* [W]	95004	78868	64713	52346	41595	32301	24320	17518
	$\mathrm{P}[\mathrm{kW}]$	33,4	31,6	29,4	27,0	24,2	21,4	18,42	15,45
	1 [A]	70,8	68,6	65,8	62,6	58,9	55,0	51,0	47,2
	Qc [W]	128450	110491	94148	79297	65837	53677	42744	32972
	COP [-]	2,84	2,49	2,20	1,94	1,72	1,51	1,32	1,13
	m [kg/h]	1251	1028	837	672	531	410	307	221
	Op.	Standard							
	th [${ }^{\circ} \mathrm{C}$]	85,8	93,3	101,2	109,8	119,3	130,0	0	0

-- No calculation possible (see message in single point selection)
*According to EN12900 ($20^{\circ} \mathrm{C}$ suction gas temp., OK liquid subcooling)

Application Limits 100\% 6FEP-50

Legend

additional cooling \＆suction gas superheat $\leq 20 \mathrm{~K}$
additional cooling or suction gas superheat $\leq 20 \mathrm{~K}$
M1：motor 1
ーーー M2：motor 2

Technical Data: 6FEP-50P

Dimensions and Connections

Technical Data

Technical Data

Displacement (1450 RPM 50Hz) $\quad 151,6 \mathrm{~m}^{3} / \mathrm{h}$

Displacement (1750 RPM 60Hz)
No. of cylinder x bore x stroke
Weight
Max. pressure (LP/HP)
Connection suction line
Connection discharge line
Oil type R290/R1270

151,6 m³/h
$183,07 \mathrm{~m}^{3} / \mathrm{h}$
$6 \times 82 \mathrm{~mm} \times 55 \mathrm{~mm}$
246 kg
19 / 32 bar
54 mm-2 1/8"
42 mm-15/8"
SHC226E (Standard) | BSG68K (Option)

Motor data

Motor version 1
Motor voltage (more on request) 380-400V PW-3-50Hz
Max operating current 96.2 A
Winding ratio 50/50
Starting current (Rotor locked) 226.0 A Y / 404.0 A YY
Max. Power input 51,0 kW
Extent of delivery (Standard) SE-B3(Standard), SE-B2(Option)
Motor protection
Enclosure class IP54 (Standard), IP66 (Option)
Vibration dampers Standard
Oil charge $4,75 \mathrm{dm}^{3}$
Discharge shut-off valve Standard
Suction shut-off valve Standard

Available Options

Discharge gas temperature sensor Option

Start unloading
Capacity control
Option

Additional fan
100-66-33\% (Option)
Option
Oil service valve
Option
Crankcase heater 140 W (Option)
Oil pressure monitoring
MP55 (Option), Delta-PII Reed (Option)

Sound measurement

Sound power level $\left(+5^{\circ} \mathrm{C} / 50^{\circ} \mathrm{C}\right)$
Sound power level (-10 $\left.{ }^{\circ} \mathrm{C} / 45^{\circ} \mathrm{C}\right)$
Sound power level ($-35^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$)
Sound pressure level @ $1 \mathrm{~m}\left(+5^{\circ} \mathrm{C} / 50^{\circ} \mathrm{C}\right)$
Sound pressure level @ $1 \mathrm{~m}\left(-10^{\circ} \mathrm{C} / 45^{\circ} \mathrm{C}\right)$
Sound pressure level @ $1 \mathrm{~m}\left(-35^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}\right)$
$83,9 \mathrm{~dB}(\mathrm{~A}) @ 50 \mathrm{~Hz}$
82,8 dB(A) @50Hz
$90,5 \mathrm{~dB}(\mathrm{~A}) @ 50 \mathrm{~Hz}$
$75,9 \mathrm{~dB}(\mathrm{~A}) @ 50 \mathrm{~Hz}$
$74,8 \mathrm{~dB}(\mathrm{~A}) @ 50 \mathrm{~Hz}$
$82,5 \mathrm{~dB}(\mathrm{~A}) @ 50 \mathrm{~Hz}$

Semi-hermetic Reciprocating Compressors

Motor 1 = e.g. 4TES-12 with 12 "HP", primary for air-conditioning (e.g. R22,R407C) and air-conditioning with R134a at high ambient temperatures.
Motor 2 = e.g. 4TES-9 with 8 "HP", universal Motor for medium and low temperature application (e.g. R404A, R507A, R407A, R407F) and air-conditioning with R134a
Motor 3 = e.g. 4TES-8, for medium temperature applications and R134a
For more information concerning the application range use the "Limits" button.

Operation modes 4VES-7 to 6FE-44 and 44JE-30 to 66FE-88 with R407F/R407A/R22

CIC = liquid injection with low temperature application, suction gas cooled motor.

ASERCOM certified performance data

The Association of European Refrigeration Component Manufacturers has implemented a procedure of certifying performance data. The high standard of these certifications is assured by:

* plausibility tests of the data performed by experts.
* regular measurements at independent institutes.

These high efforts result in the fact that only a limited number of compressors can be submitted. Due to this not all BITZER compresors are certified until now. Performance data of compressors which fulfil the strict requirements may carry the label "ASERCOM certified". In this software you will find the label at the respective compressors on the right side below the field "result" or in the print out of the performance data. All certified compressors and further information are listed on the homepage of ASERCOM.

Condensing capacity

The condensing capacity can be calculated with or without heat rejection. This option can be set in the menu
Program \square Options. The heat rejection is constantly 5% of the power consumption. The condensing capacity is to be found in the line Condensing cap. (with HR) resp. Condensing capacity.

Data for sound emission

Data based on 50 HZ apllication (IP-units 60 Hz) and R404A if not declared.
Sound pressure level: values based on free field area conditions with hemisperhical sound emission in 1 meter distance.

General remarks regarding sound data

Listed sound data were measured under testing conditions in our laboratory. For this purpose the free-standing test sample is mounted on a solid foundation plate and the pipework is connected vibration-free to the largest extend possible. Suction and discharge lines are fixed in a flexible configuration, such that a transmission of vibrations to the environment can be largely excluded. In real installations considerable differences might be observed, compared to the measurements in the laboratory. The airborne sound emitted by the compressor can be reflected from surfaces of the system and this may increase the airborne sound level measured close to the compressor. Vibrations caused by the compressor are also transferred to the system by the compressor feet and piping depending on the damping ratio of the fixings. Thus, the vibrations can induce other components to such an extent that these components contribute to an increase in airborne sound emission. If required, the transfer of vibrations to the system can be minimized by suitable fixing and damping elements.

Legend of connection positions according to "Dimensions":

1 High pressure connection (HP)
2 Connection for discharge gas temperature sensor (HP) (for 4VE(S)-6Y .. 4NE(S)-20(Y) connection for CIC sensor as alternative)
3 Low pressure connection (LP)
4 CIC system: injection nozzle (LP)
4b Connection for CIC sensor
4c Connection for CIC sensor (MP / operation with liquid subcooler)
5 Oil fill plug
6 Oil drain
7 Oil filter (magnetic screw)
8 Oil return (oil separator)
8* Oil return with NH 3 and insoluble oil
9 Connection for oil and gas equalization (parallel operation)
9a Connection for gas equalization (parallel operation)

BITZER Software v6.18.0 rev2812
$9 b$ Connection for oil equalization (parallel operation)
10 Oil heater connection
11 Oil pressure connection +
12 Oil pressure connection -
13 Cooling water connection
14 Intermediate pressure connection (MP)
15 Liquid injection (operation without liquid subcooler and with thermostatic expansion valve)
16 Connection for oil monitoring (opto-electrical oil monitoring "OLC-K1" or differential oil pressure switch "Delta-PII")
17 Refrigerant inlet at liquid subcooler
18 Referigerant outlet at liquid subcooler
19 Clamp space
20 Terminal plate
21 Maintenance connection for oil valve
22 Pressure relief valve to the atmosphere (discharge side)
23 Pressure relief valve to the atmosphere (suction side)
24 IQ MODULE
SL Suction gas line
DL Discharge gas line
Dimensions can show tolerances according to EN ISO 13920-B.

